服务热线:0512-57907288
-
首页
-
服务领域
- 服务热线:0512-57907288
- 汽车与汽车材料
- 天窗总成
- 后视镜
- 雨刮器
- 更多>
- 新能源
- 电池
- OBC车载充电机
- DCDC转换器
- 更多>
- 军工航天航空
- 军用装备环境试验
- 电子及电气元件
- 航空着陆灯
- 更多>
- 轨道交通
- 铁路车辆用电子设备
- 电动客车列车控制系统
- 列车设备型式
- 更多>
- 电话:13862648260
- 医疗
- 输液管
- 医用防护服
- 更多>
- 消费电子产品
- 笔记本电脑
- LED
- 手机
- 更多>
- 其他
- 玩具检测
- 家用电器
- 纸板
- 更多>
-
测试项目
- 服务热线:0512-57907288
- 环境可靠性试验
- 气候环境试验
- 机械环境试验
- 光老化试验
- 更多>
- 材料性能试验
- 物理性能测试
- 耐机械应力测试
- 汽车禁用物质测试
- 更多>
- 失效分析
- 材料成分分析
- 无损检测
- 破坏性分析
- 更多>
- 电气性能与信号传输
- 电气性能试验
- 电磁兼容EMC试验
- 信号完整性试验
- 更多>
- 电话:13862648260
- 力学试验
- 接插件力学试验
- 内外饰产品力学试验
- 线材力学试验
- 更多>
- 综合型试验
- 非标功能耐久性
- 座椅性能
- 天窗总成
- 更多>
-
客户服务
- 业务咨询
- 报告查询
- 常见问题
-
新闻资讯
- 行业资讯
- 3e动态
-
关于我们
- 公司简介
- 资质荣誉
- 员工风采
- 加入我们
- 联系我们
-
首页
-
服务领域
- 服务热线:0512-57907288
- 汽车与汽车材料
- 天窗总成
- 后视镜
- 雨刮器
- 更多>
- 新能源
- 电池
- OBC车载充电机
- DCDC转换器
- 更多>
- 军工航天航空
- 军用装备环境试验
- 电子及电气元件
- 航空着陆灯
- 更多>
- 轨道交通
- 铁路车辆用电子设备
- 电动客车列车控制系统
- 列车设备型式
- 更多>
- 电话:13862648260
- 医疗
- 输液管
- 医用防护服
- 更多>
- 消费电子产品
- 笔记本电脑
- LED
- 手机
- 更多>
- 其他
- 玩具检测
- 家用电器
- 纸板
- 更多>
-
测试项目
- 服务热线:0512-57907288
- 环境可靠性试验
- 气候环境试验
- 机械环境试验
- 光老化试验
- 更多>
- 材料性能试验
- 物理性能测试
- 耐机械应力测试
- 汽车禁用物质测试
- 更多>
- 失效分析
- 材料成分分析
- 无损检测
- 破坏性分析
- 更多>
- 电气性能与信号传输
- 电气性能试验
- 电磁兼容EMC试验
- 信号完整性试验
- 更多>
- 电话:13862648260
- 力学试验
- 接插件力学试验
- 内外饰产品力学试验
- 线材力学试验
- 更多>
- 综合型试验
- 非标功能耐久性
- 座椅性能
- 天窗总成
- 更多>
-
客户服务
- 业务咨询
- 报告查询
- 常见问题
-
新闻资讯
- 行业资讯
- 3e动态
-
关于我们
- 公司简介
- 资质荣誉
- 员工风采
- 加入我们
- 联系我们
研究人员开发含氟电解液 使电动汽车电池在零度以下也可充电
许多电动汽车车主担心车辆电池在寒冷气候下的有效性。据外媒报道,研究团队发现了一种新电池化学有望解决这一问题——防冻电解液充电性能在零下 4 华氏度也不会下降。
在目前的锂离子电池中,主要的问题在于电解液。作为电池中的主要组分,电解液可在电池的两个电极之间传输带电粒子(即离子),从而实现电池充放电。然而,在寒冷的地区或季节,液体在零度以下开始结冰,严重影响电动汽车的充电效率。
为了解决这一问题,美国能源部的阿贡国家实验室(Argonne National Laboratory)和劳伦斯伯克利国家实验室(Lawrence Berkeley National Laboratory)开发了一种含氟电解液,甚至在零度以下也表现良好。阿贡化学科学和工程部门的高级化学家 Zhengcheng "John" Zhang 表示:" 研究团队不仅发现了一种防冻电解液,其充电性能在零下 4 华氏度也不会下降,而且在原子层面上发现了是什么让它如此有效。"
这种低温电解液有望用于电动汽车电池,以及电网储能和消费电子产品,如计算机和电话。
在当前使用的锂离子电池中,电解液是一种广泛使用的盐(六氟磷酸锂)和碳酸盐溶剂(如碳酸亚乙酯)的混合物。该溶剂把盐溶解成液体。当电池充电时,电解液将锂离子从正极传输(含锂氧化物)到负极(石墨)。这些离子从正极中移出,然后经过电解液进入负极。在通过电解液传输的过程中,离子位于由四或五个溶剂分子组成的团簇的中心。
在起初的几次充电过程中,这些分子簇撞击负极表面并形成固体电解质界面。该保护层可以起到过滤器的作用,只允许锂离子通过层体,同时阻止溶剂分子。在这种情况下,充电时负极能够将锂原子存储在石墨结构中。在放电过程中,通过电化学反应释放锂中的电子,从而产生电力,为汽车提供动力。
问题是,在低温下含有碳酸盐溶剂的电解液开始冻结,在充电时无法将锂离子输送到负极。这是因为锂离子在溶剂团簇内紧密结合,需要比室温下高得多的能量来疏散簇群并穿透界面层。因此,研究人员一直在寻找更好的溶剂。
该团队研究了若干种含氟溶剂,并确定在零下温度的情况下能量垒最低的成分,从团簇中释放锂离子。研究人员还从原子层面确定,为什么这些特殊的成分如此有效。这取决于每个溶剂分子中氟原子的位置及数量。
在实验室中测试电芯时,该团队的氟化电解质可在零下 4 华氏度保持稳定的储能能力,实现 400 次充放电循环。即使在零下温度环境中,其容量仍与在室温下使用传统碳酸基电解液的电芯表现相当。Zhang 表示:" 这项研究展示了如何调整电解液溶剂的原子结构,以设计适合零下温度的新电解液。"
另外,这种防冻电解液不会着火,比目前使用的碳酸盐电解液要安全得多。Zhang 表示:" 该团队正在为这种更安全的低温电解液申请专利。现在,研究人员正在寻找工业合作伙伴,以将其应用于锂离子电池设计。"
